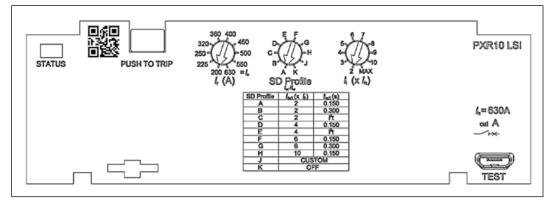
PXR 10 SKM time-current curve (TCC) settings

Overview

The PXR 10 electronic trip unit available for Power Defense[™] circuit breakers is cost-effective and designed to provide a high level of TCC-shaping flexibility with a minimal number of adjustments. This application paper will help the user understand the way SKM software accurately models the PXR 10 and available TCC options.

PXR 10 trip unit


The UL® Listed PXR 10 trip unit is only available in an LSI (long time short time instantaneous) version. Ground fault protection is not available. LI (long time instantaneous) versions of the PXR 10 are only available for IEC rated breakers. However, the LSI version has the same curve shaping capability as the LI version when using Profile K as detailed below.

PXR 10 trip units have three dial adjustments to make trip unit adjustment quick and easy.

Note: All PXR 10 adjustments are the same for the PD-2 (225 A) frame, PD-3 (400/600 A) frame, or the PD-4 (800 A) frame. Only the I, (continuous current) rating range changes for the specific frame and current sensor selected.

Eaton's published time current curves for all Power Defense frames and trip unit types can be found at:

Power Defense Circuit Breakers | Molded Case Circuit Breakers | Eaton

Figure 1. PRX 10 trip unit with LSI protection

I, --- Sets the continuous current rating of the breaker.

SD profile — This one setting dictates both the Short Time Pick-up (I_{sd}) and the Short Time Delay (t_{sd}) per **Table 1 on Page 2**. The pick-up is in multiples of I_r (i.e., continuous current rating).

 I_i — Sets the instantaneous pick-up. The instantaneous pick-up is in multiples of I_n (i.e., the current sensor value).

Effective October 2021

Table 1. SD profile settings

The SD profile settings of \hat{A} through H, and J include a wide variety of short time pick-up (I_{sd}) and time delay (t_{sd}) values with both flat response or I²t response.

Profile	l _{sd} (n x l _r)	t _{sd} (s)
А	2	0.150
В	2	0.300
С	2	l²t
D	4	0.150
E	4	l²t
F	6	0.150
G	6	0.300
Н	8	0.150
J	10	0.300
К	OFF	

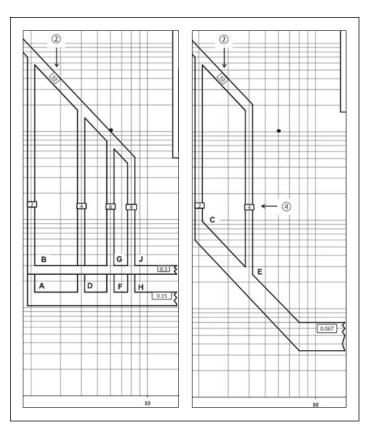


Figure 2. Flat response SD profiles (left) and I²t response SD profiles (right)

SD Profile K – Short Delay OFF

The SD Profile K gives a simple way to turn an LSI curve shape into an LI curve shape by eliminating the t_{sd} short time delay. This curve shape can be very useful as the tight tolerances and 10 possible adjustments of the I_i instantaneous allow very tight coordination between numerous overcurrent devices. With Profile K, the Long Delay Time portion of the curve continues until the I_i Instantaneous Pick-up setting is chosen as shown in the time current curve example in **Figure 3**.

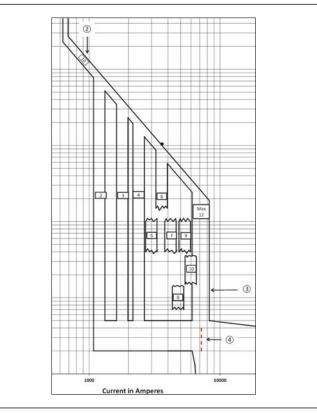


Figure 3. SD Profile K

I_i (Instantaneous) setting

The Instantaneous setting is adjustable from 2x to a maximum pick-up value determined by specific breaker frame and breaker sensor rating. The instantaneous pick-up is in multiples of **I**_n (i.e., the current sensor value). Each Power Defense circuit breaker also includes a fixed Instantaneous Override for each specific breaker frame and breaker sensor rating. Below is an example of the adjustable Instantaneous (I_i) and fixed Instantaneous Override for a 600 A PD-3 frame Power Defense circuit breaker.

Note: The Instantaneous Pick-up (**I**_i) takes precedence over the SD profile pick-up rating. For example, on a 600 A breaker (I_r = I_n = 600 A), if the SD profile was set to Profile H (I_{sd} = 8x x I_r = 4800 A) but the **I**_i Instantaneous setting is set to 2x (2 x I_n = 1200 A), the breaker will trip instantaneously at currents above 1200 A (without the 150 msec short delay t_{sd}. The SKM model takes this into account and will correctly show the breaker response based on the chosen settings as detailed below.

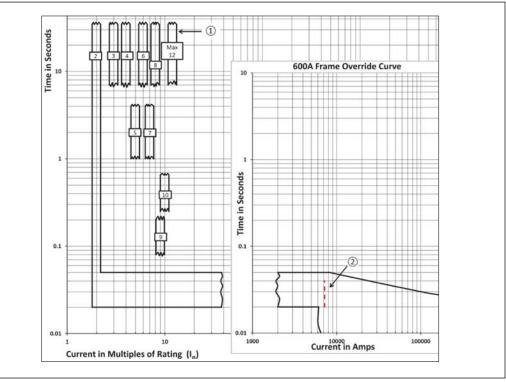


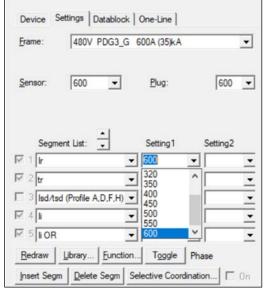
Figure 4. I, (Instantaneous) setting

SKM	modeling	of PXR	10 trip	units

Models for all Power Defense circuit breakers with thermalmagnetic and PXR electronic trip units (i.e., Static Trip) are available in the SKM library under EATON. If your library does not include these devices, you will need to go to www.skm.com to download the latest device libraries.

 After selecting the appropriate PD frame, PXR 10 LSI trip unit, and sensor rating (listed in the description column), use the Frame drop-down to select the appropriate voltage and interrupting rating of your specific breaker. The sensor and plug selections should already be populated based on the breaker you selected.

Select Device _ × Search Manufacturer: EATON Type: TCC#: Desc: Notes: Amps: -C:\PTW32\LIB\PTW.LIB Manufacturer Type Description Voltage TA ^ CAPTOR EATON PD-3 E- 1) Low Voltage Breakers LSI, 600A, IEC EATON PD-3, PXR 10 690) Static Trip) EATON PD-3, PXR 10 LSI, 630A, IEC 690 Ground Fault EATON PD-3, PXR 10 LSI, H250A 600 Query. Close Apply Deselect


Figure 5. Selecting the PD frame

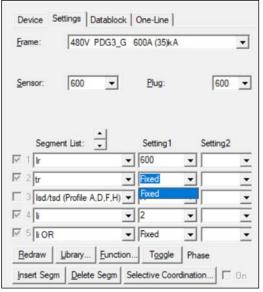

Frame:	480V PDG3	G 600A (35)k	A	-
	480V PDG3			/
		_G 600A (35)k/ K 600A (50)k/		
Sensor:	480V PDG3			
		_M 600A (65)k		
	480V PDF3	_M 600A (65)k/	A	
	(1999-1997)			
Segm	ent List: 主	Setting1	Setti	ng2
₽ 1 Ir		▼ 600	-	
₩ 2 tr		▼ Fixed	-	
	d (Profile B,G)	▼ B	•	
IN JISO/ts		• 12	•	1
I∽ 3 isd/ts				
		▼ Fixed	-	

Figure 6. Selecting the voltage and interrupting rating

Application Note AP012006EN Effective October 2021

2. You will want to next select the I. (continuous current) rating using the Setting1 drop-down next to the I, selection in the segment list. The second segment in the list, t, (long delay time) setting, is fixed for the PXR 10.

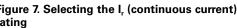


Figure 8. Selecting the t_r (long delay time) rating

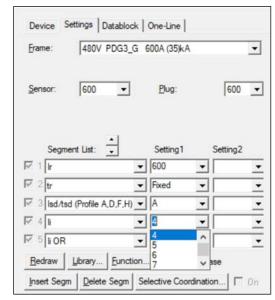


Figure 7. Selecting the I, (continuous current) rating

Settings Datablock One-Line

-

.

Isd/tsd (Profile A,D,F,H) - A

Isd/tsd (Profile A,D,F,H)

600

Segment List:

Isd (Profile C.E)

tsd (Profile C.E) Isd (Profile J,K)

tsd (Profile J.K)

480V PDG3_G 600A (35)kA

-600

- Fixed

Delete Segm Selective Coordination...

Plug

Setting1

Device

Frame

Sensor:

V 1

₩ 2 tr

₹ 3

 ∇

Red

Insert Segm

3. SD profile selection —

Next, you want to select what SD profile type you plan on using. From the chart of available profiles below, you can see that there are profile options with different types of \boldsymbol{t}_{sd} short delay curve shapes -Flat (0.150 or 0.300 sec), I²t, or OFF.

Table 2. SD profile selections

Profile	l _{sd} (n x l _r)	t _{sd} (s)
А	2	0.150
В	2	0.300
С	2	l²t
D	4	0.150
E	4	l²t
F	6	0.150
G	6	0.300
Н	8	0.150
J	10	0.300
К	OFF	

a. "Flat" response Profiles A, B, D, F, G, H [see (b) for details for Profile J] - Selecting any of these profiles in the drop-down

sets both the Short Delay Pick-up (I_{sd}) and the Short Delay Time (t_{sd}). Next, set the Instantaneous Pick-up (Ii).

Figure 9. Setting the Short Delay Pickup (I_{sd}) and the Short Delay Time (t_{ed})

Figure 10. Setting Instantaneous Pick-up (I,)

Note: The Instantaneous Pick-up (I_i) needs to be set higher than the Short Delay Pick-up (I_{sd}) in order to see the Short Delay Time (\mathbf{t}_{sd}). If the Instantaneous Pick-up (\mathbf{l}_{sd}) is equal to or less than the Short Delay Pick-up (\mathbf{l}_{sd}), it is equivalent to turning the Short Delay Time (t_{sd}) off so the breaker curve is that of an LI breaker. If this is the desired curve shape, Profile K should be used as described in Step d on Page 8.

•

-

•

•

•

•

-

C On

600

Setting2

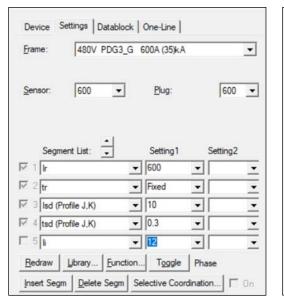
-

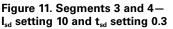
•

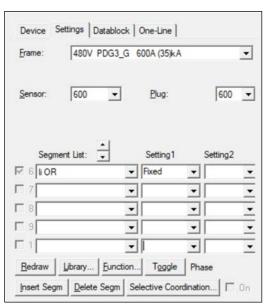
•

•

•


y gle Phase


Application Note AP012006EN


Effective October 2021

b. "Flat" response

Profile J — Profile J has a default Short Delay Pick-up (\boldsymbol{I}_{sd}) of 10x and Short Delay Time (t_{sd}) of 300 msec. The breaker will provide this response by simply setting the profile dial on the breaker face to J. To model in SKM, select the $\rm I_{sd}$ (Profile J, K) selection for Segment 3 with a setting of 10 and the t_{sd} (Profile J, K) selection for Segment 4 $\,$ with a setting of 0.3. Next, set Segment 5 to Instantaneous Pick-up (I_i) and Segment 6 to I Instantaneous Override (OR).

Note: The Instantaneous Pick-up (I_i) needs to be set higher than the Short Delay Pick-up (I_{sd}) in order to see the Short Delay Time (t_{sd}) . If the Instantaneous Pick-up (I_i) is equal to or less than the Short Delay Pick-up (I_{sd}) , it is equivalent to turning the Short Delay Time (t_{sd}) OFF, so the breaker curve is that of an LI breaker. If this is the desired curve shape, Profile K should be used as described in **Step d** on **Page 8**.

Figure 12. Setting Segment 5 to Instantaneous Pick-up (I_i)

Customizing Profile J

- Profile J also has the ability to be customized to any available Short Delay Pick-up (\mathbf{I}_{sd}) and Short Delay Time (t_{sd}) setting. Using a custom Profile J setting requires using the Power Xpert Protection Manager (PXPM) configuration software to program the breaker. Without using the PXPM software, the Profile J setting on the breaker has the default Short Delay Pick-up (Isd) of 10x and Short Delay Time (t_{sd}) of 300 msec.

To model a custom Profile J in SKM, simply follow the same instructions in (b) but set the I_{sd} (Profile J, K) and tsd (Profile J, K) settings to the custom values you programmed into the breaker.

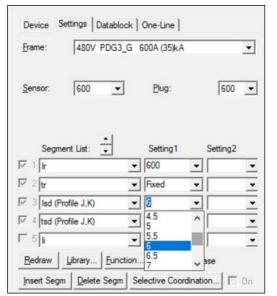
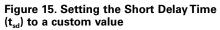
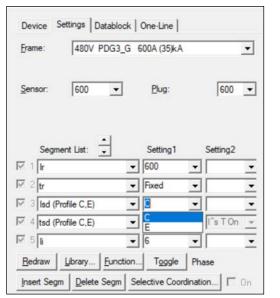
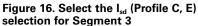



Figure 14. Setting the Short Delay Pickup (I_{sd}) to a custom value


Frame:	480V PD0	63_G 6	00A (35)k/	ł		•
<u>S</u> ensor:	600	•	<u>Plug:</u>		600	•
Segme	nt List: 💌		Setting1		Setting2	
1 1 k		-	600	-		
		_	600 Fixed	•		-
₽ 2 tr	ofile J,K)	•		• •		
IZ 2 tr IZ 3 Isd (Pro		•	Fixed	•		
		•	Fixed 6	• • • •		

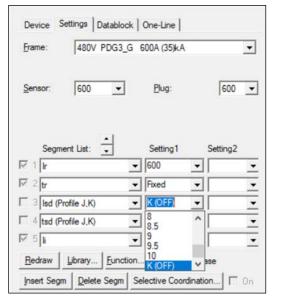


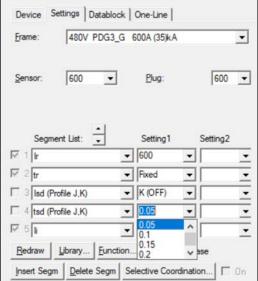
Effective October 2021

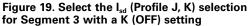
c. I²t Response Profiles

C and E — Profiles C and E give an I²t slope response for the Short Delay Pick-up $(\boldsymbol{I}_{\boldsymbol{sd}})$ and the Short Delay Time (\mathbf{t}_{sd}) . This can be helpful when coordinating with fuses or certain motor inrush profiles. To model in SKM, select the I_{sd} (Profile C, E) selection for Segment 3 with a setting of the desired C or E Profile. Select the t_{sd} (Profile J, K) selection for Segment 4. Next, set Segment 5 to Instantaneous Pick-up (I_i) and Segment 6 to I Instantaneous Override (OR).

Frame:	480V PD	G3_G 600A (35)kA	•
Sensor:	600	✓ Plug:	ſ	500 _
	nent List: 👤	Setting	1 Setti	ng2
₹ 1 r	nent List: 👤	- 600	1 Setti	ng2
	nent List: 👤		1 Setti	ng2
₹ 1 r ₹ 2 tr		- 600	1 Setti	ng2
2 1 I r	Profile C.E)	 ▼ 600 ▼ Fixed 	1 Setti	


Figure 17. Select the t_{sd} (Profile J, K) selection for Segment 4


Frame:	480V PD)G3_G	600A (35)k/	4		•
<u>S</u> ensor:	600	•	<u>P</u> lug:		600	
Seam	ent List: 🗘	1	Setting1	C.	etting2	
			Fixed		sungz	1
		- -		- -	aungz	
6 1 OR		• •		• •	aungz	
₩ 6 1 OR		- - - - -		• •	aungz	



d. Profile K (Short Delay

OFF — aka LI response) - Profile K can be used to turn off Short Delay Pick-up (I_{sd}) and the Short Delay Time (\mathbf{t}_{sd}) to give an LI breaker response. This curve shape can be very useful as the tight tolerances and 10 possible adjustments of the I, instantaneous allow very tight coordination between numerous overcurrent devices. To model in SKM, select the I_{sd} (Profile J, K) selection for Segment 3 with a setting of K (OFF) and the t_{sd} (Profile J, K) selection for Segment 4 $\,$ with a setting of 0.05. Next, set Segment 5 to Instantaneous Pick-up (I_i) with desired Instantaneous setting and Segment 6 to I Instantaneous Override (OR).

Device Settings Datablock One-Line Frame 480V PDG3_G 600A (35)kA -600 600 Plug: -Sensor -. Segment List: Setting1 Setting2 - 600 • • ₩ 2 tr -Fixed -• 3 Isd (Profile J,K) • K (OFF) • • F 4 tsd (Profile J,K) ▼ 0.05 -• V 5 -6 • -^ Redraw Library... Function. ase Insert Segm | Delete Segm Sel C On bn.

Figure 21. Setting Segment 5 to I_i with desired Instantaneous setting

Figure 20. Select the $t_{\rm sd}$ (Profile J, K) selection for Segment 4 with a setting of 0.05

Frame:	480V PD	G3_G (600A (35)kA		
Sensor:	600	•	<u>P</u> lug:		600
Saam	ent List:		Setting1	S	tting2
		· •	-	٦Ľ	
✓ 6 1 OR 7 7		•	-		
6 I OR		•	-		
6 1 OR		•	-		

Figure 22. Setting Segment 6 to I_i Instantaneous Override (OR)

© 2021 Eaton All Rights Reserved Printed in USA Publication No. AP012006EN / Z25475 October 2021

Eaton

1000 Eaton Boulevard Cleveland, OH 44122 United States Eaton.com

Eaton is a registered trademark.

All other trademarks are property of their respective owners.